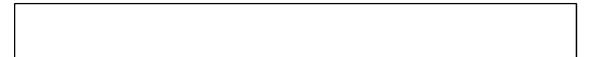
Third Exam	Name (PRINT)	
	Last, First	
Chemistry 3332	Signature	
April 20, 2007	ID#	

Please circle class time.

Dr. Bean's 10:00 AM

Dr. Bean's 1:00 PM

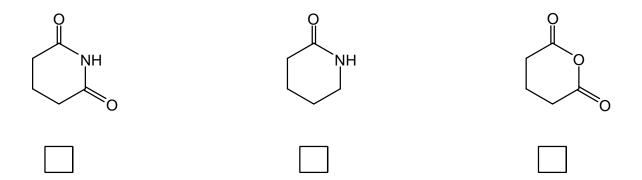

Page #	Score	
1. 15 pts.		
2. 9 pts.		
3. 18 pts.		
4. 18 pts.		
5. 14 pts.		
6. 13 pts.		
7. 13 pts.		

TOTAL_____

Note: Present your student ID when you return the exam booklet

A. Nomenclature: (15 points)
Give an acceptable IUPAC name for each of the following compounds. Be sure to indicate the **stereochemistry** where appropriate.

1. ĊN



3.

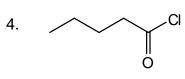
B. Facts: (9 points total)

1. Rank the following compounds in order of increasing reactivity with CH₃OH. (1 = slowest rate, 3 = fastest rate)

2. Rank the following compounds in order of increasing acidity. (1=least acidic, 3=most acidic)

3. Rank the following compounds in order of increasing acidity. (1=least acidic, 3=most acidic)

C. Reactions: Total = 36 points, 6 points each


Please provide the starting material, reagents or major product in the answer box. Be sure your drawing indicates **stereochemistry** if applicable. Partial credit is awarded only when intermediate products in a multi-step reaction are shown below the reaction.

1.

2.

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

3.

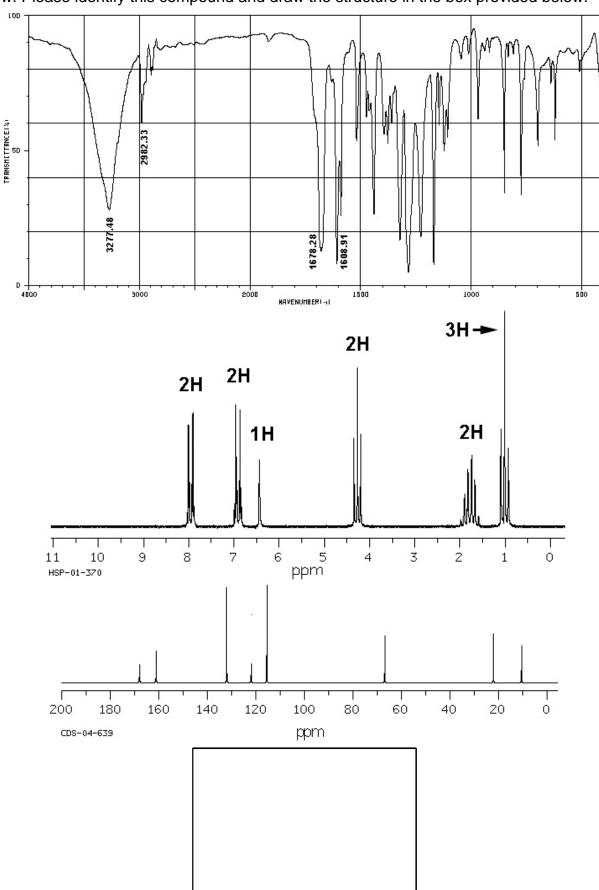
6.

- 1. CO₂, then H⁺
- 2. CH_3Li (2 eq.), then H_3O^+
- 3. NaOEt/EtOH/Heat

D. Mechanisms: (14 points)

Provide a clear mechanism to explain the formation of the product. Use curved arrows to indicate "electron flow". Remember to show only one step at a time. Show all intermediates and all formal charges. When more than one resonance contributor may be drawn, be sure to draw the most stable contributor.

$$H_3C$$
 N
 H_3O^+
 O


E. Synthesis: 13 Points

Synthesize the molecule below using any of the following reagents: benzene, any alkanes, alkenes, or alcohols of **three carbons** or less, any inorganic reagents, any oxidizing or reducing agents, and any peroxyacids.

$$\begin{array}{c} \operatorname{CH_2CH_3} \\ \operatorname{-} \operatorname{CH_2CH_2N-CH_2CH_3} \end{array}$$

F. Spectroscopy: 13 Points

A compound with the formula $C_{10}H_{12}O_3$ exhibits the IR, 1H NMR and proton decoupled ^{13}C NMR spectra shown below. Please identify this compound and draw the structure in the box provided below.

