Third Exam	Name (PRINT)	
	. ,	Last, First
Chemistry 3332	Signature	
April 18, 2009	ID#	

Please circle class time.

Dr. Bean's 10:00 AM

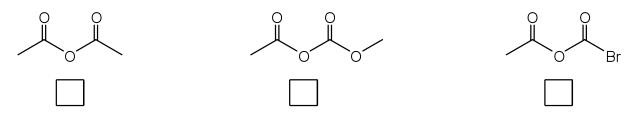
Dr. Bean's 1:00 PM

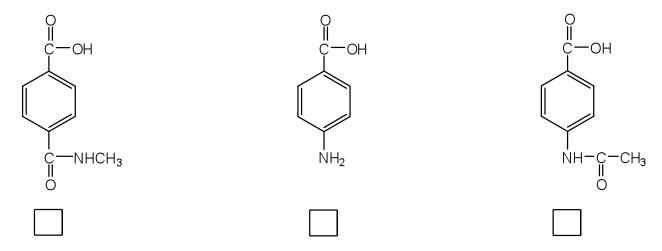
Page #	Score	e
1. 16 pts.		
2. 12 pts.		
3. 18 pts.		
4. 18 pts.		
5. 12 pts.		
6. 12 pts.		
7. 12 pts.		

TOTAL_____

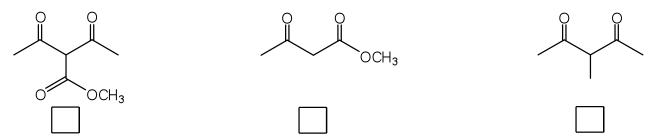
Note: Present your student ID when you return the exam booklet

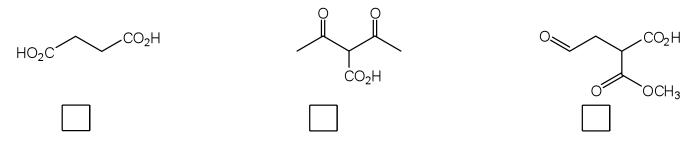
A. Nomenclature: (16 points)
Give an acceptable IUPAC name for each of the following compounds. Be sure to indicate the **stereochemistry** where appropriate.


1.	O	\/	_^	\
	\mathbb{I}		•	`
	Ö	Ö		


_				_
1				
1				
1				
1				
1				
1				
1				
1				
1				

3.


1. Rank the following compounds in order of increasing rate of nucleophilic acyl substitution. (1 = slowest rate, 3 = fastest rate)


2. Rank the following compounds in order of increasing acidity. (1=least acidic, 3=most acidic)

3. Rank the following compounds in order of increasing acidity. (1=least acidic, 3=most acidic)

4. Consider the decarboxylation at 180 $^{\circ}$ C of the following carboxylic acids. If decarboxylation is possible, place **Y** (for yes) in the box. If not, place **N** (for no) in the box.

C. Reactions: Total = 36 points, 6 points each

Please provide the reagents or major product in the answer box. Be sure your drawing indicates **stereochemistry** if applicable. Partial credit is awarded only when intermediate products in a multi-step reaction are shown below the reaction.

4.

4. SOCl₂

5.

$$\begin{array}{c|c}
 & O \\
 & I \\
 & C \\$$

Note: LDA = lithium diisopropylamide

6.

D. Mechanism: (12 points)

Provide a clear mechanism to explain the formation of the product. Use curved arrows to indicate "electron flow". Remember to show only one step at a time. Show all intermediates and all formal charges. When more than one resonance contributor may be drawn, be sure to draw the most stable contributor.

$$\begin{array}{c|c}
H \\
N \\
\hline
1. CH_3C \\
\hline
CI \\
\hline
2. H_3O^+
\end{array}$$

$$\begin{array}{c}
O \\
CH_3
\end{array}$$

$$\begin{array}{c}
O \\
CH_3
\end{array}$$

E. Synthesis: 12 Points

Synthesize the molecule below using any of the following reagents: any alkanes, alkenes, or alcohols of **three carbons** or less, any inorganic reagents, any oxidizing or reducing agents, and any peroxyacids.

F. Spectroscopy: 12 Points

A compound with the formula $C_9H_{16}O_3$ exhibits the IR, 1H NMR and proton decoupled ^{13}C NMR spectra shown below. Please identify this compound and draw the structure in the box provided below.

Will	add later this week of April 19, 2	010.